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Atomic valence states in simple valence bond and molecular orbital theories of electronic structure 
have been compared. A basic difference emerges which can be characterised by the presence of one- 
centre Coulomb terms in the molecular orbital valence state energy. The recognition of this difference 
is important when performing generalised Hfickel calculations: the Coulomb integrals are now given 
by charge dependent orbital electronegativities, and not the negative of the appropriate ionisation 
potentials of the kind available in the existing tabulations by Hinze and Jaff6 and other authors. The 
analysis is given in detail for the special case of tetrahedrally coordinated boron and nitrogen, as found 
in cubic boron nitride. 

Es werden atomare Valenzzust~inde in einfachen Valenzbindungen und MO Theorien der 
Elektronenstruktur verglichen. Ein wesentlicher Unterschied ergibt sich durch die Anwesenheit yon 
Einzentren-Coulomb-Termen in den MO-Valenzzustandsenergien. Das Erkennen dieser Unter- 
schiede spielt eine entscheidende Rolle bei der Durchfiihrung von Berechnungen nach der allgemeinen 
Htickel-Theorie: die Coulomb-Integrale sind nun durch Z-abh~ingige Orbitalelektronennegativit~iten 
und nicht durch geeignete Ionisationspotentiale, wie sie in den Tabellen yon Hinze und Jaff+ und 
anderen Autoren verf/igbar sind, gegeben. An Hand des tetraedisch gebundenen Bors und Stickstoffs, 
wie sie in kubischen Bornitriden vorkommen, wird eine genaue Analyse der Methode an einem spe- 
ziellen Beispiel durchgef/ihrt. 

Comparaison des 6tats de valence atomiques dans les m6thodes de la m6som6rie et des orbitales 
mol6culaires. I1 apparait une diff6rence fondamentale, que l'on peut caract6riser par la pr6sence de 
termes coulombiens monocentriques dans l'6nergie de l'6tat de valence en orbitales mol6culaires. 
I1 importe d'etre conscient de cette diff6rence lorsqu'on effectue des calculs Hiickel-6tendu: les int6grales 
coulombiennes sont alors donn6es par des 61ectron6gativit6s orbitales d6pendant de la charge et 
non par l'oppos6 des potentiels d'ionisation du type de ceux que l'on obtient dans les tables de Hinze 
et Jaff6 ou d'autres auteurs. On donne une analyse d6taill6e pour le cas particulier de l'azote et du bore 
~t coordination t6tra6drique, tel qu'il apparait dans le nitrure de bore cubique. 

Introduction 

T h e  m o t i v a t i o n  for i n t r o d u c i n g  the  va l ence  s ta te  c o n c e p t  c o m e s  f r o m  the  

ex t r eme  diff icul ty in ca l cu l a t i ng  m o l e c u l a r  b i n d i n g  energ ies  f r o m  first pr inc ip les .  

Q u i t e  f r equen t ly  the  m o l e c u l a r  b i n d i n g  ene rgy  r ep resen t s  on ly  a b o u t  1% of  the  

to t a l  m o l e c u l a r  ene rgy ;  tha t  is, it m a y  be  o f  the  s a m e  o rde r  of, or  less than,  the  
c o r r e l a t i o n  ene rgy  er ror .  F o r  this reason ,  a t o m i c  spec t ra l  d a t a  are  f r equen t ly  

i n c o r p o r a t e d  in to  e n e r g y  ca l cu l a t i ons  to  a c c o u n t  for the  la rge  i n t r a - a t o m i c  

c o n t r i b u t i o n  to  the  c o r r e l a t i o n  energy.  
O n e  of  the  first a t t e m p t s  to  def ine  a va l ence  s ta te  was m a d e  by  He i t l e r  a n d  

R u m e r  [1]. T h e y  r e g a r d e d  the  va l ence  s ta te  of  an  a t o m  f o r m i n g  n b o n d s  as the  

a p p r o p r i a t e  a t o m i c  s ta te  o f  spin  mu l t i p l i c i t y  n + 1. Th i s  va l ence  s ta te  does  n o t  

read i ly  d i sp lay  the  d i r e c t i o n a l  cha rac te r i s t i c s  n o r m a l l y  a s soc i a t ed  wi th  an  a t o m  
i n v o l v e d  in the  f o r m a t i o n  of  n b o n d s :  b u t  s o m e  d i r ec t iona l  c h a r a c t e r  does  a p p e a r  
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after a proper consideration of second order interchanges, as recently discussed 
by Heitler [2], and also by Hansen [3]. The lack of directional characteristics 
is thus partially accounted for; but the Heitler-Rumer valence states is rather 
a restricted one, as the use of a single valence bond structure is unlikely to yield 
a good representation of the molecular electronic wave function. 

An improved molecular wave function is obtained by using a set of directional 
orbitals as basis functions, which may be obtained from the set of valence shell 
atomic functions by a suitable unitary transformation. The perfect pairing ap- 
proximation is then invoked to yield a single valence bond structure which has 
bond equivalence built into it - a feature which is missing from the simpler 
Heitler-Rumer approach, but recently amended by Craig and Thirunamachandran 
[4]. For example, the ground state of methane is represented by the single structure 

(p = ~<g telh 1 te2h 2 teah3 te4h4 

where tei and h i (i = 1, 2, 3, 4) are carbon tetrahedral hybrids and hydrogen ls 
atomic orbitals respectively. After performing the required non-adiabatic dis- 
sociation, the valence state energy of carbon is found to consist of contributions 
from atomic term energies arising from the valence shell configurations s2p 2, 
sp a and p4 [5], and not just the sp 3, 5S energy as required by Heitler and Rumer: 

E~s(C ) = 0.312E(sp 3, 5S) + 0.141E(p 4, 3p) + 0.282E(sp3, 3D) 

+ 0.141 E(s2p 2, 3p) + 0.047 E(p 4, 1D) 

+0.031 E(sp 3, 1D) + O.047 E(sZp 2, 1D) (1) 

- 0.093 (pC, 11) I Hlsap z, 1D) - 0.282 @4, 3PlHis2p2 ' 3p).  

The appearance of off-diagonal terms in Eq. (1) arises from the configuration 
interaction within the pairs of 1/) and ap states, on account of the single con- 
figurational representation of these terms. The valence state energy given in Eq. (1) 
is also reproduced by the well-known van Vleck formula [6]: 

E.s(C)=4(tel] - 1  V2 + Vcoreltel) + 2 {teiteiltejtej)-�89 (2) 
i<j 

where (teite~ltektel)=- ~te i (1) te j (1)  1 tek(2) tel(2) dz 1 dz2. The equivalence 
JJ  t'12 

of Eq. (1) and (2) is most readily seen by rewriting both equations in terms of the 
more usual Slater-Condon parameters. 

The non-stationary character of the valence state is clearly shown in Eq. (1), 
since L and S are no longer good quantum numbers. However, Eq. (1) still implies 
a restricted form of valence state: a slightly more general form can be obtained by 
considering all other covalent structures involving single or double occupancy 
of the carbon hybrid atomic orbitals. The analysis has again been given by Voge [5], 
and the valence state energy now has the form: 

Ev~(C) = 0.212 E(sp 3, 5S) + 0.036 E(p 4, 3p) + 0.278 E(sp 3, 3D) 
+ 0.290 E(s2p 2, 3p) + 0.017 E(p 4, 1D) 

+ 0.021 E(sp 3, 1D) + 0.146 E(s2p 2, 1D) (3) 

- 0.101 (p4, 1DIH] sZp2, 1D) _ 0.204 @4, 3plHIs2p2 ' 3p).  
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The magnitude of the factors weighting the term energies, in Eq. (3), now depend 
upon the values for certain molecular integrals, and are not determined by symmetry. 
Permutational symmetry requirements only dictate that the same atomic terms 
appear in Eqs. (1) and (3), but now place no restrictions on the magnitudes of the 
respective weighting factors. 

The extension of the theory to include ionic structures is an involved procedure, 
and the appropriate calculation has not yet been made. So instead of proceeding 
further within a valence bond framework, it is convenient to discuss the role of the 
valence state in simple molecular orbital theory. 

Valence States in Molecular Orbital Theory 

A large amount of data have been collected in the literature pertaining to the 
restricted form of valence state associated with the perfect pairing model. But 
nearly all semi-empirical electronic structure calculations are performed using 
some form of molecular orbital theory: it therefore seems desirable to examine the 
concept of a restricted form of atomic valence state in a single configuration mole- 
cular orbital theory. This is important as an increasing number of semi-empirical 
molecular orbital calculations on large molecules, notably of the extended Htickel 
variety E7, 8], usually incorporate valence state data which have been calculated 
from Van Vleck's perfect pairing formula, in the manner originally given by 
Mulliken [91: a procedure which obviously requires careful justification. 

The simplest valence bond and molecular orbital theories of chemical bonding 
are based on fundamentally different assumptions. The valence bond method over- 
correlates the electronic motion since electrons with opposed spins, involved 
in the formation of electron-pair bonds, are on average associated with different 
atoms. The molecular orbital theory, on the other hand, is based on the idea of 
delocalised one-electron functions (molecular orbitals), extending over the entire 
molecular framework. For a closed shell molecule, where each occupied molecular 
orbital accommodates two electrons with opposed spins, the electronic motion 
tends to be under-correlated. The degree of electronic correlation in the two simple 
theories is best examined by comparing the diagonal elements of the appropriate 
two-electron density matrices. For the simple case of H2, these density matrix 
elements are given by 

F(1, 2; 1, 2)m o = �88 {(p2 (1) + 2(Pa(1 ) (pb(1) + q)~(l)} 

x {q~2(2) + 2q~a(2 ) %(2) + pbZ(2)) 

x � 8 9  - ~ (2)  r i O ) }  ~ , 

F(1,2; 1, 1 2 2 2)vb = ~-{~G (1) % (2) + ~o2(2) q92 (1) + 2q~,(1) %(1) q~.(2) %(2)} 

x �89 {~(1) fl(2) - ~(2) fl(1)} 2 . 
Hence, 

F(1, 2; 1, 2)too = �89 F(1, 2; 1, 2)vb + 1 2 ~{~G (1) q~2(2)+ ~G2(1) cp2 (2) 

+ 2~o~(1) r q~b(2) + 2r rp.(2) ~0b(2 ) 

+ 2~p2(2) Cpa(1 ) %(1) + 2q~a(1 ) q~b(1) q~a(2) ~0b(2 ) 

+ 2(,o.(1) q~b(1) ~0~ (2)} X �89 {~X(1)//(2) -- ~(2) f l (1)}  2 . 
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The atomic terms in F~o, which are not present in Fvb, are given by 

1 2 2 g{~o a (1) (pa (2) + (p2(1) (p2(2)} �9 {e(1) fl(2) - ~(2) fl(1)} 2 

and give rise to an additional Coulomb term in the expression for the total elec- 
tronic energy: 

�88 q~al ~O a q~ a) JV l(~gb q)bl ~Ob (igb) . (4) 

Each term in Eq. (4) can be regarded as originating from the Coulomb interaction 
between two spin densities of 0.5 associated with each atom. 

The analysis is readily generalised for molecular orbital wave functions of 
many-electron closed shell molecules: 

V(1, 2; 1, 2)m o = �89  1) 7(2, 2) -- ~(1, 2) 7(2, 1)} 
where 

7(1, 1') = �89 ~ PkL q~k(1) ~Pt(l') {a(1) c~(l') + fi(1) fi(l')}. 
k,l 

There atomic term in Fmo, appropriate to atomic orbital ~0p, is now given by 

1 2 2 2 P;p q~p (1) ~o. (2) {a(1) fi(2) - a(2) fl(1)} 2 

where, once again, the one-centre Coulomb repulsion term originates from the 
interaction between the two spin densities �89 Ppp, associated with atomic orbital q~p, 

Thus the valence state energy, defined within the single configuration molecular 
orbital theory, differs from the corresponding energy derived from the simple 
valence bond approach, because of the intra-atomic contribution to the diagonal 
elements of the two-electron density matrix. Terms of this kind would only arise 
in a more complete valence bond treatment, where covalent and ionic structures, 
involving doubly occupied atomic orbitals, are explicitly considered. In principle 
the molecular orbital valence state must be obtained by separating the molecular 
wave function into its component covalent and ionic structures. Normally this 
is a very involvedprocedure and, for practical purposes, some alternative method 
is required. Two examples are now considered: first the case of H2, where the 
valence state energy can be given precisely. Secondly, the case of methane which 
requires a different treatment, 

The valence state energy of hydrogen in He is given by 

/~VSMO = (r  I - -  �89 V2 1 - ~-I qhs} + �88 cpl~l ~ols qhs) = f + �88 &n. 

Since E ( H - ) =  2 f +  6 n, E ( H ) = f ,  Evs~o can be written unambiguously in terms 
of the energies of H and H- :  

EvsMo = �89 En(ls, 2S) + �88 EH-( ls2, IS) = WPe + fin 

where Wee is the valence state energy as given by the perfect pairing model. 
For carbon in methane, the valence state energy is given by 

4Pt~ t~ f + 6Pte, t~ Ptezte2" (~'c + (Ptea tel) 2" 6c 
+12P~e~(tez]--�89 Vz+V~o~e]te2)+�89 ~ P~e,~e2P,~e. (5) 

i,j,p,q 
(iCj;pCq) 

[(tei tej]tep teq) - �89 
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where 
f = ( te l  l - � 8 9  V2 + Vcore[tel) , 

6'~ = {(te 1 tel ]re2 te2)-- �89 re2 [te2 tel)}, 

Oc -= (tel tex [tex te l ) ,  

and tei (i = 1, 2, 3, 4) label the tetrahedral hybrid atomic orbitals. If Pte, te, = 1, the 
carbon atom carries no net effective charge, and Eq. (5) reduces to the simpler ex- 
pression 

Wpp -[- 6 c -}- 12Ptel re2 ( te l  [ -- �89 V 2 + Vr [te2) 

+�89 ~ p~e,t~jpt~,,eq[(teite~ltepteq)_�89 " (6) 
i , j , p ,q  

(i ~sj; p ~ q) 

The partitioning of the valence state energy implied by Eq. (6) is convenient, and 
not unique; but it is hoped that any inaccuracies arising from this choice will be 
marginal. 

The Practical Use of Molecular Orbital Valence States 

The discussion given in the previous section is now developed to show how 
Coulomb integrals may be calculated for an atom X, which is involved in the 
formation n bonds, e.g., as in XY,. The analysis is then worked through in detail 
for tetrahedrally co-ordinated boron and nitrogen atoms, as found in cubic boron 
nitride. 

The main difficulty in any extended Hfickel molecular orbital calculation 
arises from the variation of orbital charge density, and hence atomic valence 
state energy, with each interaction of the self-consistent procedure. It is therefore 
necessary to find an approximate expression for the valence state energy in terms 
of the intra-atomic elements of the charge density-bond order matrix P. This 
situation has been recognised by other authors, notably Klopman [10], Oleari 
and coworkers [11 l, Ferreria [12, 13], and Jorgensen [14]. But the present work 
differs from these treatments in the manner in which the one-centre Coulomb 
integrals are incorporated into the valence state energies. The absence of these 
terms from conventional treatments has also been noted recently by Joy and Silver- 
stone [15], and Ferreria [16]. 

For present purposes, it is convenient to describe the bonding in a molecule 
XY, in terms of n equivalent (hybrid) atomic orbitals associated with atom X, 
each one of which is preferentially directed towards a single Y atom. The molecular 
orbitals are subjected to a unitary transformation in order to yield equivalent 
molecular orbitals, which are predominantly localised within the X-Y bonding 
regions. A further simplification is now made whereby the equivalent molecular 
orbitals are assumed completely localised within the region of a particular X-Y 
bond. This approximation makes the valence state energy independent of terms 
depending upon intra-atomic bond orders: an assumption invariably made by 
other authors without further comment. 

The molecular orbital valence state energy, associated with atom X, therefore 
follows from the generalisation of Eq. (5) to the case of n equivalent orbitals: 

E x ( P ) = n P x f  + n ( n -  1) 1 2 p2 �9 6'x + ~ nVZ~.Sx=nP~oq,  (7) 
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where ~x is the Coulomb integral arising when the total energy is additively parti- 
tioned [177. Alternatively, Eq. (7) may be written in the form [10]: 

E x = aq  + bq 2 (8) 

where a = f ,  b -  n - 1  6'x+ 6x  and q is the valence electron population of 
2n 4n ' 

atom X~ 
The Coulomb integral cq is obtained from Eq. (7) in the manner described 

in [171: 

G = f + I ( n - 1 ) c Y x + @ J P x = a + 2 b q .  

The same result is also obtained by differentiating Eq. (8) with respect to q [101. 
Thus, on selecting values ofq corresponding to X § X ~ and X-, it is not difficult 

to show that cq is given by 

1 0 ~x ~(Ix' + t ~  o o = - G ( I x  ~ - G ) .  

Qx is the effective atom charge on atom X, equal to Z x - q, where Zx is the number 
of valence electrons provided by X; I ~ and E ~ are the valence state ionisation poten- 
tial and electron affinity associated with the processes: 

X ( @ f  x/n q)Zx/n ...  ~OZn x/n) --> X ! (qo~zx-T-1)In @(ZxG 1)/n ...  q)~Zx~ 1) /n )  , 

It now remains to determine I ~ and E ~ for the particular system under study. 
In the present paper, the theory will be applied to the calculation cq for tetra- 
hedrally coordinated boron and nitrogen atoms, as found in the diamond-like 
modification of boron nitride. The results were recently used without giving a 
detailed derivation [171. 

Determination of  Ix ~ and E ~ from Spectroscopic Data 

I ~ and E ~ are determined by the energies of the following processes for the 
boron atom: 

B(te  3/4 te 3/4 te3/4 te3/4) ~ B+ (te2/4 t e 2/4 te 2/4 re2~4), 

B(te3/4 re3/4 re3~ 4 te3/4) ~ B_ (te4/4 te4/4 te4/4 te4/4) " (9) 

The total energies of the neutral and ionic species, with configurations as given 
in Eq. (9), are first referred to the energy of the lowest spectroscopic state of the 
respective species as zero of energy. The problem then reduces to one of calculating 
promotion energies, providing the lowest energy ionisation potential and electron 
affinity of boron are available from experiment. 

First of all consider the promotion energy associated with the neutral atom. 
The energy of the boron atom in the configuration given in Eq. (9), follows from 
Eq. (7): 

EB[B(te3/r te3/4 te3/4 te3/4)l = 3 f + 9 " 6  B + ~-" g/B . 

Instead of working out the promotion energies from first principles, it is more 
helpful to use the data already compiled by Hinze and Jaff6 [181. However, it 
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should be noted that these data are not suitable, without further modification, 
for incorporating into generalised Htickel calculations, because of the omission 
of the single-centre two-electron integrals. The energies of two different configura- 
tions of the neutral boron atom are as follows (electrons having random spins): 

E [ B ( t e t e t e ) ]  = 3 f + 36'B 

E [ B ( t e  z te)] = 3 f + 6 B + f'B 

The promotion energies for these configurations are listed in Ref. [181. Thus the 
promotion energy required in the present work is obtained in the following manner: 

P [ B ( t e  3m te 3/4 te  3/4 te3/4)] = ~-  P [ B ( t e  te te)] - ~ P [B( te  z te)] + ~ 6 B (10) 

P denotes the promotion energy of the appropriate atomic configuration within 
the round brackets. 

The promotion energies for the positive and negative ions are obtained in an 
analogous way: 

P [ B + ( t e  2/4 te  2/4 te  2/4te2/4)] = 23- P[B+(te te)] - �89 (te2)] + �88 fB, 
(11) 

P [B-(te ~/4 te 4/4 te  4/4 te4/4)] = P [B-(te te te te)] + 88. 

Ideally, fB should depend upon the state ofionisation of the boron atom. However, 
as discussed in the last section, the calculations are made tractable by neglecting 
any variation in f8 with ionicity. On the basis of this assumption, f8 is determined 
by the energy change in either of the processes given in Eq. (12). 

2B(te 2 te) ---, B+(te 2) + B-(te 2 te2),  

2B(te te te)---, B+(te te) + B-(te 2 te te) . (12) 
Thus, 

fB = Iat -- Eat + P[B+(te2)]  + P[B (teZte2)] - 2 P [ B ( t e 2 t e ) ]  (13) 
or  

fib = I a t -  Eat + P[B+( te te ) ]  + P[B (te 2 te te)]  - 2 P [ B ( t e t e  te)] . (14) 

/at and Eat are the lowest energy ionisation potential and electron affinity, re- 
spectively, of the neutral boron atom. All of the quantities defining fn are listed 
by Hinze and Jaff6 [18], and the most suitable value for this parameter is obtained 
by taking the arithmetic mean of Eqs. (13) and (14). 

Fortunately, small errors in fB are not very important since both I ~ and E ~ 
involve differences in the promotion energies of the atom and the appropriate 
ion:i t  therefore follows from Eqs. (10) and (11) that there is only a small coefficient 
multiplying fiB in the expressions defining I ~ and E ~ 

The following data for boron are available from the work of Hinze and 
Jaff6 [181 : 

P[B( t eZ te ) ]  = 9.137 eV, 

P[B+(te2)]  = 12.171 eV, 

P [ B - ( t e 2 t e 2 ) ]  = 7.225 eV, 

P [B-(re te te re)] = 3.542 eV, 

/at = 8.296 eV, 

P [ B ( t e t e t e ) ]  = 6.586 cV, 

P[B+( t e t e ) ]  = 8.724 cV, 

P [ B - ( t e  2 te te)]  = 5.384 eV, 

E,,t=0.33 eV. 
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Substitution of these values into Eqs. (10, (11), (13) and (14) then yields: 

P [B( te  3/4 te 3/4 te 3/4 te~/4)] = 14.058 eV, 

P [B+(te 2/4 te 2/4 te 2/4 te2/4)] = 13.747 eV, 

P [ B -  (te 4/4 te 4/4 te 4/4 te4/4)] = 12.537 eV, 

and 6B = 8.995 eV. lo a and E ~ are then obtained from Eq. (9) as 

IB ~ = 7.985 eV and E ~ = 1.851 eV. 

Hence the Coulomb integral for boron has the following dependence upon the 
effective atomic charge, QB: 

c~ B (eV) = -4 .918  - 6.134 QB. 

The appropriate  valence state ionisation potential and electron affinity for 
the nitrogen a tom are determined from the following processes: 

N(te5/4 te5/4 teS/4 teS/4) ~ N+(te  4/4 te4/4 te4/4 te4/4) 

N ( t e  5/4 te 5/4 teS/4 teS/4) ~ N-(re 6/4 te 6/4 te 6/4 te 6/4) . 

The promotion energies for the neutral and ionic species are found by the 
same procedure which was used above for the boron atom: 

p [ N ( t e S / 4 t e S / 4 t e S / 4 t e S / 4 ) ] = ~ p [ N ( t e 2 t e t e t e ) ]  _ 3 p [ N ( t e 2 t e 2 t e )  + t6 c~N , 1 5  

P [N+(te  4/4 te 4/4 te 4/4 te4/4)] = P [N+(te t e t e  te)] + CSN, 

P [N (te 6/4 te 6/4 te 6/4 te6/4)] = ~ P [N (re 2 te 2 te te)] - �89 P [N (te 2 te 2 re) + �88 c5 N . 

The value of c5 N is found by averaging the energy change for the two processes. 

2N(te 2 tete re)--, N+(te t e t e  te) + N-(te  2 te 2 re2), 

2N(te 2 te 2 te) ~ N+(te 2 te 2) + N-( te  2 te 2 te2). 

Hinze and Jaff6 [18] list the following data for nitrogen: 

PIN(re  2re 2 t e ) ]  = 14.265 eV, 

P [ N + ( t e  2 te2)] = 19.104 eV, 

P IN-(re  2 te 2 te2)] = 8.898 eV, 

I~ = 14.535 eV, 

P [ N ( t e 2 t e t e t e ) ]  = 9.920 eV, 

P [ N + ( t e t e t e t e ) ]  =9 .524eV,  

P [ N  ( te2te2te te)]  = 5.818 eV, 

Ea~=0.05 eV. 

and c~ N is found to have the value 13.512 eV. 
Thus I ~ = 16.620 eV, E ~  6.589 eV and the variatio_~ of Coulomb integral 

with effective charge is given by 

0~ N (eV) = -- 11.604 -- 10.031 QN. 

Conclusion 

The general concept of an atomic valence state has been examined within 
the framework of simple molecular orbital theory. A basic difference between the 
restricted forms of molecular orbital and valence bond valence states emerges, 
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which can be characterised by the presence of one-centre Coulomb terms in 
the molecular orbital valence state energy. The recognition of this general feature 
is essential when performing calculations of the extended Hfickel variety. The 
effect may also be important in other K-electron calculations where the o" bonds 
are always implicitly described within the perfect pairing formalism. 

Calculations of an approximate nature are made for tetrahedrally coordinated 
nitrogen and boron, as found in cubic boron nitride. The importance of the one- 
centre Coulomb terms is apparent on comparing the results with those previously 
obtained by Coulson, R~dei and Stocker [19]. These authors used an improperly 
defined valence state, and there is a marked difference with the present work in 
the predicted variation of Coulomb integral with effective atomic charge. 

A more detailed analysis of simple molecular orbital calculations requires 
the removal of the assumption of complete localisation of the equivalent orbitals: 
this necessarily involves the recognition of intra-atomic bond orders in the ex- 
pression for the Coulomb integrals. But at this level of treatment, it is probably 
better to use a Pariser-Parr-Pople or similar scheme, where all important integrals 
are considered explicitly. 
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are gratefully acknowledged. 
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